Tampilkan postingan dengan label native diet. Tampilkan semua postingan
Tampilkan postingan dengan label native diet. Tampilkan semua postingan

Food Reward: a Dominant Factor in Obesity, Part V

Non-industrial diets from a food reward perspective

In 21st century affluent nations, we have unprecedented control over what food crosses our lips.  We can buy nearly any fruit or vegetable in any season, and a massive processed food industry has sprung up to satisfy (or manufacture) our every craving.  Most people can afford exotic spices and herbs from around the world-- consider that only a hundred years ago, black pepper was a luxury item.  But our degree of control goes even deeper: over the last century, kitchen technology such as electric/gas stoves, refrigerators, microwaves and a variety of other now-indispensable devices have changed the way we prepare food at home (Megan J. Elias.  Food in the United States, 1890-1945). 

To help calibrate our thinking about the role of food reward (and food palatability) in human evolutionary history, I offer a few brief descriptions of contemporary hunter-gatherer and non-industrial agriculturalist diets.  What did they eat, and how did they prepare it? 
Read more »

Healthy Skeptic Podcast

Chris Kresser has just posted our recent interview/discussion on his blog The Healthy Skeptic.  You can listen to it on Chris's blog here.  The discussion mostly centered around body fat and food reward.  I also answered a few reader questions.  Here are some highlights:
  • How does the food reward system work? Why did it evolve?
  • Why do certain flavors we don’t initially like become appealing over time?
  • How does industrially processed food affect the food reward system?
  • What’s the most effective diet used to make rats obese in a research setting? What does this tell us about human diet and weight regulation?
  • Do we know why highly rewarding food increases the set point in some people but not in others?
  • How does the food reward theory explain the effectiveness of popular fat loss diets?
  • Does the food reward theory tell us anything about why traditional cultures are generally lean?
  • What does cooking temperature have to do with health?
  • Reader question: How does one lose fat?
  • Reader question: What do I (Stephan) eat?
  • Reader question: Why do many people gain fat with age, especially postmenopausal women?
The podcast is a sneak preview of some of the things I'll be discussing in the near future.  Enjoy!

Traditional Preparation Methods Improve Grains' Nutritive Value

Soaking or Germinating Grains

The most basic method of preparing grains is prolonged soaking in water, followed by cooking. This combination reduces the level of water-soluble and heat-sensitive toxins and anti-nutrients such as tannins, saponins, digestive enzyme inhibitors and lectins, as well as flatulence factors. It also partially degrades phytic acid, which is a potent inhibitor of mineral absorption, an inhibitor of the digestive enzyme trypsin and an enemy of dental health (1). This improves the digestibility and nutritional value of grains as well as legumes.

I prefer to soak all grains and legumes for at least 12 hours in a warm location, preferably 24. This includes foods that most people don't soak, such as lentils. Soaking does not reduce phytic acid at all in grains that have been heat-treated, such as oats and kasha (technically not a grain), because they no longer contain the phytic acid-degrading enzyme phytase. Cooking without soaking first also does not have much effect on phytic acid.

The next level of grain preparation is germination. After soaking, rinse the grains twice per day for an additional day or two. This activates the grains' sprouting program and further increases their digestibility and vitamin content. When combined with cooking, it reduces phytic acid, although modestly. Therefore, most of the minerals in sprouted whole grains will continue to be inaccessible. Many raw sprouted grains and legumes are edible, but I wouldn't use them as a staple food because they retain most of their phytic acid as well as some heat-sensitive anti-nutrients (2).

Grinding and Fermenting Grains

Many cultures around the world have independently discovered fermentation as a way to greatly improve the digestibility and nutritive value of grains (3). Typically, grains are soaked, ground, and allowed to sour ferment for times ranging from 12 hours to several days. In some cases, a portion of the bran is removed before or after grinding.

In addition to the reduction in toxins and anti-nutrients afforded by soaking and cooking, grinding and fermentation goes much further. Grinding greatly increases the surface area of the grains and breaks up their cellular structure, releasing enzymes which are important for the transformation to come. Under the right conditions, which are easy to achieve, lactic acid bacteria rapidly acidify the batter. These bacteria are naturally present on grains, but adding a starter makes the process more efficient and reliable.

Due to some quirk of nature, grain phytase is maximally active at a pH of between 4.5 and 5.5, which is mildly acidic. This is why the Weston Price foundation recommends soaking grains in an acidic medium before cooking. The combination of grinding and sour fermentation causes grains to efficiently degrade their own phytic acid (as long as they haven't been heat treated first), making minerals much more available for absorption (4, 5, 6, 7). This transforms whole grains from a poor source of minerals into a good source.

The degree of phytic acid degradation depends on the starting amount of phytase in the grain. Corn, rice, oats and millet don't contain much phytase activity, so they require either a longer fermentation time, or the addition of high-phytase grains to the batter (8). Whole raw buckwheat, wheat, and particularly rye contain a large amount of phytase (9), although I feel wheat is problematic for other reasons.

As fermentation proceeds, bacteria secrete enzymes that begin digesting the protein, starch and other substances in the batter. Fermentation reduces lectin levels substantially, which are reduced further by cooking (10). Lectins are toxins that can interfere with digestion and may be involved in autoimmune disease, an idea championed by Dr. Loren Cordain. Grain lectins are generally heat-sensitive, but one notable exception is the nasty lectin wheat germ agglutinin (WGA). As its name suggests, WGA is found in wheat germ, and thus is mostly absent in white flour. WGA may have been another reason why DART participants who increased their wheat fiber intake had significantly more heart attacks than those who didn't. I don't know if fermentation degrades WGA.

One of the problems with grains is their poor protein quality. Besides containing a fairly low concentration of protein to begin with, they also don't contain a good balance of essential amino acids. This prevents their efficient use by the body, unless a separate source of certain amino acids is eaten along with them. The main limiting amino acid in grains is lysine. Legumes are rich in lysine, which is why cultures around the world pair them with grains. Bacterial fermentation produces lysine, often increasing its concentration by many fold and making grains nearly a "complete protein", i.e. one that contains the ideal balance of essential amino acids as do animal proteins (11, scroll down to see graph). Not very many plant foods can make that claim. Fermentation also increases the concentration of the amino acid methionine and certain vitamins.

Another problem with grain protein is it's poorly digested relative to animal protein. This means that a portion of it escapes digestion, leading to a lower nutritive value and a higher risk of allergy due to undigested protein hanging around in the digestive tract. Fermentation followed by cooking increases the digestibility of grain protein, bringing it nearly to the same level as meat (12, 13, 14, 15). This may relate to the destruction of protease inhibitors (trypsin inhibitors, phytic acid) and the partial pre-digestion of grain proteins by bacteria.

Once you delve into the research on traditional grain preparation methods, you begin to see why grain-eating cultures throughout the world have favored certain techniques. Proper grain processing transforms them from toxic to nutritious, from health-degrading to health-giving. Modern industrial grain processing has largely eschewed these time-honored techniques, replacing them with low-extraction milling, extrusion and quick-rise yeast strains.

Many people will not be willing to go through the trouble of grinding and fermentation to prepare grains. I can sympathize, although if you have the right tools, once you establish a routine it really isn't that much work. It just requires a bit of organization. In fact, it can even be downright convenient. I often keep a bowl of fermented dosa or buckwheat batter in the fridge, ready to make a tasty "pancake" at a moment's notice. In the next post, I'll describe a few recipes from different parts of the world.

Further reading:

How to Eat Grains
A Few Thoughts on Minerals, Milling, Grains and Tubers
Dietary Fiber and Mineral Availability
A New Way to Soak Brown Rice

Malocclusion: Disease of Civilization, Part VIII

Three Case Studies in Occlusion

In this post, I'll review three cultures with different degrees of malocclusion over time, and try to explain how the factors I've discussed may have played a role.

The Xavante of Simoes Lopes

In 1966, Dr. Jerry D. Niswander published a paper titled "The Oral Status of the Xavantes of Simoes Lopes", describing the dental health and occlusion of 166 Brazilian hunter-gatherers from the Xavante tribe (free full text). This tribe was living predominantly according to tradition, although they had begun trading with the post at Simoes Lopes for some foods. They made little effort to clean their teeth. They were mostly but not entirely free of dental cavities:
Approximately 33% of the Xavantes at Simoes Lopes were caries free. Neel et al. (1964) noted almost complete absence of dental caries in the Xavante village at Sao Domingos. The difference in the two villages may at least in part be accounted for by the fact that, for some five years, the Simoes Lopes Xavante have had access to sugar cane, whereas none was grown at Sao Domingos. It would appear that, although these Xavantes still enjoy relative freedom from dental caries, this advantage is disappearing after only six years of permanent contact with a post of the Indian Protective Service.
The most striking thing about these data is the occlusion of the Xavante. 95 percent had ideal occlusion. The remaining 5 percent had nothing more than a mild crowding of the incisors (front teeth). Niswander didn't observe a single case of underbite or overbite. This would have been truly exceptional in an industrial population. Niswander continues:
Characteristically, the Xavante adults exhibited broad dental arches, almost perfectly aligned teeth, end-to-end bite, and extensive dental attrition. At 18-20 years of age, the teeth were so worn as to almost totally obliterate the cusp patterns, leaving flat chewing surfaces.
The Xavante were clearly hard on their teeth, and their predominantly hunter-gatherer lifestyle demanded it. They practiced a bit of "rudimentary agriculture" of corn, beans and squash, which would sustain them for a short period of the year devoted to ceremonies. Dr. James V. Neel describes their diet (free full text):
Despite a rudimentary agriculture, the Xavante depend very heavily on the wild products which they gather. They eat numerous varieties of roots in large quantities, which provide a nourishing, if starchy, diet. These roots are available all year but are particularly important in the Xavante diet from April to June in the first half of the dry season when there are no more fruits. The maize harvest does not last long and is usually saved for a period of ceremonies. Until the second harvest of beans and pumpkins, the Xavante subsist largely on roots and palmito (Chamacrops sp.), their year-round staples.

From late August until mid-February, there are also plenty of nuts and fruits available. The earliest and most important in their diet is the carob or ceretona (Ceretona sp.), sometimes known as St. John's bread. Later come the fruits of the buriti palm (Mauritia sp.) and the piqui (Caryocar sp.). These are the basis of the food supply throughout the rainy season. Other fruits, such as mangoes, genipapo (Genipa americana), and a number of still unidentified varieties are also available.

The casual observer could easily be misled into thinking that the Xavante "live on meat." Certainly they talk a great deal about meat, which is the most highly esteemed food among them, in some respects the only commodity which they really consider "food" at all... They do not eat meat every day and may go without meat for several days at a stretch, but the gathered products of the region are always available for consumption in the community.

Recently, the Xavante have begun to eat large quantities of fish.
The Xavante are an example of humans living an ancestral lifestyle, and their occlusion shows it. They have the best occlusion of any living population I've encountered so far. Here's why I think that's the case:
  • A nutrient-rich, whole foods diet, presumably including organs.
  • On-demand breast feeding for two or more years.
  • No bottle-feeding or modern pacifiers.
  • Tough foods on a regular basis.
I don't have any information on how the Xavante have changed over time, but Niswander did present data on another nearby (and genetically similar) tribe called the Bakairi that had been using a substantial amount of modern foods for some time. The Bakairi, living right next to the Xavante but eating modern foods from the trading post, had 9 times more malocclusion and nearly 10 times more cavities than the Xavante. Here's what Niswander had to say:
Severe abrasion was not apparent among the Bakairi, and the dental arches did not appear as broad and massive as in the Xavantes. Dental caries and malocclusion were strikingly more prevalent; and, although not recorded systematically, the Bakairi also showed considerably more periodontal disease. If it can be assumed that the Bakairi once enjoyed a freedom from dental disease and malocclusion equal to that now exhibited by the Xavantes, the available data suggest that the changes in occlusal patterns as well as caries and periodontal disease have been too rapid to be accounted for by an hypothesis involving relaxed [genetic] selection.
The Masai of Kenya

The Masai are traditionally a pastoral people who live almost exclusively from their cattle. In 1945, and again in 1952, Dr. J. Schwartz examined the teeth of 408 and 273 Masai, respectively (#1 free full text; #2 ref). In the first study, he found that 8 percent of Masai showed some form of malocclusion, while in the second study, only 0.4 percent of Masai were maloccluded. Although we don't know what his precise criteria were for diagnosing malocclusion, these are still very low numbers.

In both studies, 4 percent of Masai had cavities. Between the two studies, Schwartz found 67 cavities in 21,792 teeth, or 0.3 percent of teeth affected. This is almost exactly what Dr. Weston Price found when he visited them in 1935. From Nutrition and Physical Degeneration, page 138:
In the Masai tribe, a study of 2,516 teeth in eighty-eight individuals distributed through several widely separated manyatas showed only four individuals with caries. These had a total of ten carious teeth, or only 0.4 per cent of the teeth attacked by tooth decay.
Dr. Schwartz describes their diet:
The principal food of the Masai is milk, meat and blood, the latter obtained by bleeding their cattle... The Masai have ample means with which to get maize meal and fresh vegetables but these foodstuffs are known only to those who work in town. It is impossible to induce a Masai to plant their own maize or vegetables near their huts.
This is essentially the same description Price gave during his visit. The Masai were not hunter-gatherers, but their traditional lifestyle was close enough to allow good occlusion. Here's why I think the Masai had good occlusion:
  • A nutrient-dense diet rich in protein and fat-soluble vitamins from pastured dairy.
  • On-demand breast feeding for two or more years.
  • No bottle feeding or modern pacifiers.
The one factor they lack is tough food. Their diet, composed mainly of milk and blood, is predominantly liquid. Although I think food toughness is a factor, this shows that good occlusion is not entirely dependent on tough food.

Sadly, the lifestyle and occlusion of the Masai has changed in the intervening decades. A paper from 1992 described their modern diet:
The main articles of diet were white maize, [presumably heavily sweetened] tea, milk, [white] rice, and beans. Traditional items were rarely eaten... Milk... was not mentioned by 30% of mothers.
A paper from 1993 described the occlusion of 235 young Masai attending rural and peri-urban schools. Nearly all showed some degree of malocclusion, with open bite alone affecting 18 percent.

Rural Caucasians in Kentucky

It's always difficult to find examples of Caucasian populations living traditional lifestyles, because most Caucasian populations adopted the industrial lifestyle long ago. That's why I was grateful to find a study by Dr. Robert S. Corruccini, published in 1981, titled "Occlusal Variation in a Rural Kentucky Community" (ref).

This study examined a group of isolated Caucasians living in the Mammoth Cave region of Kentucky, USA. Corruccini arrived during a time of transition between traditional and modern foodways. He describes the traditional lifestyle as follows:
Much of the traditional way of life of these people (all white) has been maintained, but two major changes have been the movement of industry and mechanized farming into the area in the last 25 years. Traditionally, tobacco (the only cash crop), gardens, and orchards were grown by each family. Apples, pears, cherries, plums, peaches, potatoes, corn, green beans, peas, squash, peppers, cucumbers, and onions were grown for consumption, and fruits and nuts, grapes, and teas were gathered by individuals. In the diet of these people, dried pork and fried [presumably in lard], thick-crust cornbread (which were important winter staples) provided consistently stressful chewing. Hunting is still very common in the area.
Although it isn't mentioned in the paper, this group, like nearly all traditionally-living populations, probably did not waste the organs or bones of the animals it ate. Altogether, it appears to be an excellent and varied diet, based on whole foods, and containing all the elements necessary for good occlusion and overall health.

The older generation of this population has the best occlusion of any Caucasian population I've ever seen, rivaling some hunter-gatherer groups. This shows that Caucasians are not genetically doomed to malocclusion. The younger generation, living on more modern foods, shows very poor occlusion, among the worst I've seen. They also show narrowed arches, a characteristic feature of deteriorating occlusion. One generation is all it takes. Corruccini found that a higher malocclusion score was associated with softer, more industrial foods.

Here are the reasons I believe this group of Caucasians in Kentucky had good occlusion:
  • A nutrient-rich, whole foods diet, presumably including organs.
  • Prolonged breast feeding.
  • No bottle-feeding or modern pacifiers.
  • Tough foods on a regular basis.
Common Ground

I hope you can see that populations with excellent teeth do certain things in common, and that straying from those principles puts the next generation at a high risk of malocclusion. Malocclusion is a serious problem that has major implications for health, well-being and finances. In the next post, I'll give a simplified summary of everything I've covered in this series. Then it's back to our regularly scheduled programming.

Impressions of Hawai'i

I recently went to Hawai'i for the American Society of Human Genetics meeting in Waikiki, followed by a one-week vacation on Kaua'i with friends. It was my first time in Hawai'i and I really enjoyed it. The Hawai'ians I encountered were kind and generous people.

Early European explorers remarked on the beauty, strength, good nature and exellent physical development of the native Hawai'ians. The traditional Hawai'ian diet consisted mostly of taro root, sweet potatoes, yams, breadfruit, coconut, fish, occasional pork, fowl including chicken, taro leaves, seaweed and a few sweet fruits. It would have been very low (but adequate) in omega-6, because there simply isn't much of it available in this environment. Root crops and most fruit are virtually devoid of fat; seafood and coconut contain very little omega-6; and even the pork and chicken would have been low in omega-6 due to their diets. Omega-3 would have been plentiful from marine foods, and saturated fats would have come from coconut. All foods were fresh and unrefined. Abundant exercise and sunlight would have completed their salubrious lifestyle.

The traditional Hawai'ian diet was rich in easily digested starch, mainly in the form of poi, which is fermented mashed taro. I ate poi a number of times while I was on Kaua'i, and really liked it. It's mild, similar to mashed potatoes, but with a slightly sticky consistency and a purple color (due to the particular variety of taro that's traditionally used to make it).

I had the opportunity to try a number of traditional Polynesian foods while I was on Kaua'i. One plant that particularly impressed me is breadfruit. It's a big tree that makes cantaloupe-sized starchy green fruit. Breadfruit is incredibly versatile, because it can be used at different stages of ripeness for different purposes. Very young, it's like a vegetable, at full size, it's a bland starch, and fully ripe it's starchy and sweet like a sweet potato. It can be baked, boiled, fried and even dried for later use. It has a mild flavor and a texture similar to soft white bread. It's satisfying and fairly rich in micronutrients. On the right are breadfruit, coconut and sugarcane, three traditional Hawai'ian foods.

I find perennial staple crops such as breadfruit very interesting, because they're much less destructive to soil quality than annual crops, and they're a breeze to maintain. I could walk into the backyard of the apartment I was renting and pick a breadfruit, soak it, throw it in the oven and I had something nutritious to eat in just over an hour. It's like picking a bag of potatoes right off a tree. Insects and birds didn't seem to like it at all, possibly because the raw fruit exudes a bitter, rubbery sap when damaged. Unfortunatley, breadfruit is a tropical plant. Temperate starchy staples that were exploited by native North Americans include the majestic American chestnut in the Appalachians, and acorns in the West. These are both more work than breadfruit to prepare, particularly acorns which must be extensively soaked to remove bitter tannins.

One of the foods Polynesian settlers brought to Hawai'i was sugar cane. I had the opportunity to try fresh sugar cane for the first time while I was on Kaua'i. You cut off the outer skin, then cut it into strips and chew to get the sweet juice. It was mild but tasty. I don't know if it was a coincidence or not, but I ended up feeling unwell after eating several pieces. It may simply have been too much sugar for me.

Modern Hawai'i is a hunter-gatherer's dream. There are fruit trees everywhere, including papayas, wild and cultivated guavas, mangoes, avocados, passion fruit, breadfruit, bananas, citrus fruits and many others. Many of those fruits did not predate European contact however. Even pineapples were introduced to Hawai'i after European contact. Coconuts are everywhere, and we could pick one up for a drink and snack on almost any beach. The forests are full of wild chickens (such as the one at left) and pigs, both having resulted from the escape and subsequent mixing of Polynesian and European breeds. Kaua'ians frequently hunt the pigs, which are environmentally damaging due to their habit of rooting through topsoil for food. Large areas of forest on Kaua'i look like they've been ploughed due to the pigs' rooting. Humans are their only predators and their food is abundant.

While I was on Kaua'i, I ate mostly seafood (including delicious raw tuna poke), poi, breadfruit, coconut and sweet fruits-- a real Polynesian style hunter-gatherer diet! I swam every day, hiked in the lovely interior, and kayaked. It was a great trip, and I hope to return someday.
.

Label